S. Bass, P. Danielewicz and S. Pratt – PRL 85, 2689 (2000) Balance Functions: A Signal of Late-Stage Hadronization

NSCL/MSU Scott Pratt

Motivation

Suppose one could identify balancing charges? (e.g. K^+, K^-)

- Hadrons appear at $\tau \approx 0.5$ fm/c.
- String dynamics separate balancing $Q \bar{Q}$ by $\Delta y \sim 1$.
- ullet Strangeness annihilates with time, reduces probability of small Δy .

- Hadronization at 5-10 fm/c into collision, $T \approx 165$.
- Many $q\bar{q}$ pairs created during hadronization.
- ullet Balancing charges separated by $\Delta y \sim v_{
 m therm.}$

Narrow distribution in Δy signals late production of $q\bar{q}$ pairs. \to novel phase persisted substantial time.

Creation of $q\bar{q}$ Pairs at RHIC

During hadronization, $qar{q}$ pairs are created for three reasons.

- 1. Gluons \to Hadrons. At fixed T, each gluon should make ≈ 1 hadron due to entropy conservation.
- 2. Quarks \to Hadrons. At fixed T, each quark should make \approx one hadron due to entropy conservation.
- 3. Non. Pert. Vacuum \rightarrow Hadrons. (e.g. DCC) Probably a small fraction of particle creation.
- Each hadron contains at least two quarks, so number of quarks should more than double during hadronization.
- ullet Coalescing quark gas would require rise in T to keep $\Delta S \geq 0$.

What are Balance Functions?

Given the existence of a particle with momentum p_1 , balance functions describe the probability of seeing a particle of opposite charge with momentum p_2 .

$$egin{align} B(p_2|p_1) &\equiv rac{1}{2} \left\{
ho(+Q,p_2|-Q,p_1) -
ho(-Q,p_2|-Q,p_1)
ight. \ &+
ho(-Q,p_2|+Q,p_1) -
ho(+Q,p_2|+Q,p_1)
ight\} \end{array}$$

Here $ho(b,p_2|a,p_1)$ is the conditional probability,

$$ho(b,p_2|a,p_1) = rac{N(a,p_1;b,p_2)}{N(a,p_1)}$$

Common binning choice:

- 1. p_1 is anywhere in detector.
- 2. p_2 refers to relative rapidity.

Can be applied to specific particle/antiparticle pairs, e.g. π^+/π^- , or to specific charges, e.g. (all antibaryons)/(all baryons).

Properties of Balance Functions

- ullet Normalized to unity: If +Q/-Q refers to ALL +/- particles $\sum\limits_{p_2} B(p_2|p_1) = 1$
- Works for both cases: 1. $\Sigma_i q_i = 0$, e.g. strange/antistrange 2. $\Sigma_i q_i \neq 0$, e.g. baryon/antibaryon
- ullet Normalization reduced for finite acceptance or for using subset of particles, e.g. analyze only K^+/K^- .
- May be analyzed event-by-event.

Statistical Error and Multiplicity M

$$ho(b,p_2|a,p_1) = rac{N(a,p_1;b,p_2)}{N(a,p_1)}$$

- ullet Statistical error for numerator $\propto \sqrt{M^2}$.
- ullet Denominator also increases $\propto M$.
- ullet Error $\propto 1/\sqrt{N_{
 m events}}$, independent of M.
- \bullet $p\bar{p}$, K^+K^- and $\pi^+\pi^-$ give similar errors.
- ullet 10^5 events makes good balance function.

Balance Functions from Jets

- Similar analyses performed with:
 - ppdata:
 - D. Drijard et al., NPB 155 (1979) 269.
 - D. Drijard et al., NPB 166 (1980) 233.
 - I.V. Ajinenko et al., ZPC **43** (1989) 37.
 - eedata:
 - R. Brandelik et al., PLB 100 (1981) 357.
 - M. Althoff et al., ZPC 17 (1983) 5.
 - H. Aihara et al., PRL 53 (1984) 2199.
 - H. Aihara et al., PRL 57 (1986) 3140.
 - P.D. Acton et al., PLB 305 (1993) 415.
- ullet Several pairs analyzed, e.g. $\Lambda ar{\Lambda}$.
- JETSET fits data.

Thanks to T. Sjöstrand for references!

Thermal Model

Bjorken 1-d expansion:

Time: $au = \sqrt{t^2 - z^2}$

Position: $\eta = \tanh^{-1}(z/t)$ Collective velocity: $y = \eta$.

- Pairs generated thermally at $\underbrace{3}$ same η with same collective \underline{m} rapidity y.
- ullet $B(\Delta y)$ determined by T/m.
- Heavier particles provide greater sensitivity.

Diffusion: An Analytic Picture

Diffusion Eq:

$$egin{align} rac{\partial}{\partial au} f(au, \eta) &= -rac{eta}{ au} rac{\partial^2}{\partial \eta^2} f(au, \eta), \ eta &= v_t/(n au\sigma) \end{aligned}$$

Solution:

$$f(au,\eta) \sim \exp\left(-rac{\eta^2}{2\sigma_\eta^2}
ight), \ \sigma_\eta^2 = 2eta \ln(au/ au_0)$$

- No diffusion when
 - 1. $\beta = 0$ (Coll. Rate $\rightarrow \infty$)
 - 2. $\tau = \tau_0$ (No Collisions)
- ullet σ_{η} largest for small au_0 .

$$\sigma_{
m balance}^2 = 2 \left(\sigma_{y,
m therm.}^2 + \sigma_{\eta}^2
ight)$$

Collisions and Annihilations: A Simple Model

Procedure:

- 1. Generate pair thermally at $\eta=0, au= au_0$.
- 2. Follow straight-line trajectories between collisions.
- 3. Perform $N_{\rm coll}$ collisions randomly in $\ln au$.
- 4. Readjust momenta to local $\frac{1}{2}$ 0.5 thermal conditions. $T = 225 7.5(\tau 1), \tau_f = 15$

Annihilations:

- Modeled by convoluting pairs.
- If annihilation rate = creation rate \rightarrow no effect.

Collisions/Annihilations magnify sensitivity to creation time!

Collisions: Model Summary

Even pions become sensitive to hadronization time!

Far reaching implications

For example,

A. If measured balance functions have significant extra strength near Δy =0, characteristic of $T\sim 165$ MeV, then either

- Large numbers of new charges were created late in the reaction, e.g. hadronization of gluons.
- Mean free paths of partons were anomalously short during very early times.

B. If pp & AA balance functions appear identical,

- Gluonic modes did not contribute to entropy for a substantial time.
- Quarks and antiquarks did not contribute to entropy as separate particles (unless temperature jumped at hadronization).
- Most explanations of strangeness enhancement are wrong.
- Most jet energy loss calculations are misguided.
- ullet QGP explanations of J/Ψ suppression are misguided.

Conclusions

- Provide clear signal of late stage hadronization – a long-lived QGP?
- Strangeness/Antibaryon pro-
- duction issues can be studied. • Gating on p_t allows one to study production as function of r_{\perp} .

NSCL/MSU Scott Pratt